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Introduction

The objective of this research project was to develop a free vortex wake model for aerodynamic
analysis of horizontal axis wind turbines. This to be built into the NREL aerodynamic performance
code AeroDyn.

AeroDyn provides the aerodynamic input to the structural dynamic code FAST. [1, 2] Together
they form an aeroelastic model for analysis of horizontal axis wind turbines. [3] AeroDyn is the
predominant aerodynamic code used for design in the United States and has been validated for use in
the European Union. [4] The two aerodynamic models in AeroDyn are Blade Element Momentum
(BEM) and Generalized Dynamic Wake (GDW). These models generally perform well but are
lacking in some important cases. It is likely designers will be searching, in the next 5 years or so,
for alternative models for use in particular design conditions.

Free vortex wake models are a likely candidate for advanced modeling. They give a more accu-
rate and detailed description of the aerodynamic wake than BEM or GDW and can be accurately
applied in conditions these other models can not. [5] Free wake models are more computationally
expensive than the BEM and GDW models but still much more efficient than application of com-
putational fluid dynamic (CFD) codes. [6, 7] The application of CFD models to wind turbines has
proven problematic and the run times are much too long for use in engineering design.

Existing Models

As a turbine’s rotor extracts energy from the wind, that wind flow is slowed. There is a balance
between the energy removed by the turbine and the resulting change in flow. Several wake models
have been used to analyze this interaction. One of the simplest, and most widely used, is the Blade
Element Momentum (BEM) model. Here a static balance between the blade loads and slowing of
the flow is maintained. The balance involves a radial portion of the blade and the flow affected by
that blade element. Two problems surface using this approach. First, each blade element, and its
flow, has no affect on adjacent elements. This is inadequate for prediction of yawed performance
were the turbine wake is skewed. Also the assumed static, or instantaneous, balance between blade
forces and flow neglects dynamic wake effects. This method is very good for steady, head on flow but
lacking for many yawed and dynamic conditions. The GDW model was developed to address yawed
and dynamic flow. This actuator disk model is surprisingly good for its computational simplicity.
However, it contains many simplifying assumptions which bring its results into question.

Another way to model the turbine wake is through vortex methods. Here the energy extracted
from the flow is modeled as vorticity. The vorticity may be modeled as line vortices shed and
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Figure 1: Vortex Wake

trailed into the wake from the blades. This forms a helical vortex lattice representing the turbine
wake, similar to that shown in Figure 1. Once free from the blade each wake vortex is free to move
under the influence of the other wake vortices, hence the terminology “free vortex wake model.”
This is a reasonably accurate representation of the wake. Each wake vortex has an effect on all
blade elements inherently modeling the interaction between these blade elements. Also dynamic
wake effects are inherently modeled since the vortices interact dynamically.

The researcher’s previous work linked a Dynamic Prescribed Vortex Wake model to AeroDyn. [8]
A prescribed wake model is similar to a free wake model but the locations of the wake vortices are
determined by empirical prescription functions rather than vortex interactions. This prior work
provided the basis for the new Free Vortex Wake model. The interface with AeroDyn is the same
for the new model and many of the routines and data structures in this prescribed wake model are
applicable to a free wake code.

Analysis

A turbine slows air flow as it extracts energy. Optimally, a turbine will slow the flow, at the
rotor, by 1/3. This slowing of air flow affects the velocity and angle of attack which the turbine
blades see. For accurate performance predictions this slowing of air flow, or turbine wake, must be
included in aerodynamic models. A free vortex wake model is one method of depicting this wake,
the flow downwind of a turbine.

Basic Theory

A vortex wake model takes, as input, the vortex strengths generated by the turbine blades over
time. The wake model determines induced velocities at the blades due to the wake, again as a
function of time. This induced velocity, combined with wind speed and blade motions, determines
the velocity and angle of attack seen by the blades allowing lift and drag calculation to be done.



These blade loads determine the vortex strengths generated and also feed into the structural code
to determine blade motions.

In the current model a lifting line theory is used. This depicts blade lift as a bound vortex
along the quarter cord of the blade. If the lift is known radially along the blade the strength of the
blade bound vortices can be found using a form of the Kutta-Joukowski theorem [9],

dL = pVRI'ydr (1)

where dL - Lift force over blade radial length dr, p - air density, Vi - relative wind speed, I’y -
strength of circulation, and dr - radial length of blade section.

In the current model the blade is separated into radial elements. Discrete vortices are assumed
trailed into the wake due to radial changes in blade lift between elements. Likewise discrete vortices
are shed from the blade each time step due to changes in lift, and thus bound vorticity over time.
The resulting wake is then a ladder of discrete vortices trailing from each blade, as in Figure 1.
The “sides” of the ladders are due to changes in bound vorticity from one blade element to the
next. The “rungs” are due to changes in vorticity with time, one for each time step.

Once the vortices are generated by the blades they are free to migrate downwind. How they
move is determined by the local flow, induced velocity and wind speed. The induced velocity is
determined by using the Biot-Savart Law. This states a vortex will induce a velocity at any point
removed from that vortex. In Figure 2 the differential vortex element dS will induce a velocity
dV at point P. With the position vector R locating point P relative to the vortex element, the
Biot-Savart Law [9] gives the induced velocity at P as

_FdeR

vV =——3 (2)

where I' is the vortex strength.
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Figure 2: Biot-Savart Law

If a vortex is taken to be along a straight line this equation can be manipulated into a vector
equation as. [8]

I' ruoxry, |[rp-Ar r,-Ar

(3)

This gives the induced velocity at a point P generated by a straight line vortex between points
a and b. The vectors involved are shown in Figure 3.

The Biot-Savart Law predicts infinite velocity at the center of, or on the line of, a vortex. This
is not realistic so a core model is used to reduce velocities inside a set distance from the vortex.
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Figure 3: Biot-Savart Vectors

With this form of the Biot-Savart Law we can determine the induced velocity, generated by a
particular straight vortex segment, anywhere in the flow field. To find the overall induced velocity
from the wake the individual contributions from all vortex segments are summed. Thus the Biot-
Savart Law is repeatedly applied to find the induced velocity at each blade element, the local flow
at the blade is determined.

The vortices in the wake will move over time. A free wake model determines the motion of
each vortex, or vortex end, through Biot-Savart calculations. The induced velocity at each wake
point, vortex end, is determined by summing contributions from each wake vortex. This is done
for each wake point each time step. This calculation of induced velocity at each wake point is the
computationally expensive portion of a free vortex wake model.

The motion of each wake point is then a first order ordinary differential equation in time.
Actually there are three equations, X/Y/Z at each wake point. A predictor-corrector numerical
procedure is used to track each wake point through time.

Free Wake Model

The current Free Wake Model uses a Prescribed Vortex Wake Model to initiate the wake struc-
ture. [8] The code could start with a helical wake but the prescribed wake model is a better starting
condition.

Once a starting wake is found a time stepping solution is initiated. This is driven by the
structural code which calls the aerodynamic code once each time step. The Free Wake Model
procedure can be described, in broad brush strokes, as follows.

e Induced velocities at each wake point are known for the previous time step from the prior
iteration. (If not know on the first pass they are calculated)

e An Ordinary Differential Equation (ODE) predictor-corrector solution is used. Here the
predictor is used to predict the position of each wake point at this new, current, time. (In
the current code a simple Euler predictor-corrector is used.)

e With an estimate of the current wake, induced velocities at the blade elements are found.

e With induced velocities at the blade estimated lift forces and bound vorticity are found.



e Having estimates of bound vorticity the trailed and shed vorticity are estimated.

e A numerical ODE corrector is applied using new estimates of wake positions and trailed &
shed vorticity. This will give the position of each wake point at the new, current, time.
(This is computationally expensive portion of a free wake model involving many Biot-Savart
calculations.)

e Knowing the current wake positions a final iteration is done to determine bound vorticity,
as well as shed & trailed vorticity. The following steps are repeated until convergence is
obtained.

— Determine induced velocity at each blade element.
— Using lift and drag tables find blade loads and bound vorticity.
— With bound vorticity update trailed and shed vorticity.

e Pass loads back to structural code and wait for next iteration.

Additional numerical method corrector steps could be included in the iteration above. However
this would significantly slow the calculations.

The current Free Wake Model is very simple. The aim of this project was to develop the core
code without refinements. Downwind the wake is simply truncated, cut off after a certain number
of cycles. Some vortex models bunch wake vorticity into one tip vortex after a small number of
rotor cycles. It would be possible to also bunch vorticity into one tip and one root vortex. Both
methods would significantly reduce the number of vortex elements thus speeding execution. Such
combining of vorticity has not been done in the current model.

Little work has yet been spent refining the predictor-corrector numerical method used. Cur-
rently a simple Euler predictor-corrector is implemented.

Multi-core Processing

Biot-Savart calculations take the vast majority of the codes execution time. These calculations can
be done independently which is tailor made for a multi-core processor. The open source library,
OpenMP, was chosen to introduce multiple threaded computation into the algorithm because of the
non-intrusive nature of the macro language. Using simple OpenMP compiler directives, the code
base was modified to perform multi-threaded calculations without impacting the code structure or
requiring the introduction of specialized threading libraries. Compilers that do not support the
OpenMP compile time directive simply treat the macros as comments.

To target candidate areas in the algorithm where parallel execution would have the largest
impact, the Intel suite of multi-core programming tools was used. To gain insight into areas of the
code base where a multiple threads would have largest impact, the tool vTune Analyzer was used.
The run was configured with 2 blades and 10 blade elements. Initial code runs and analysis were
performed on an Intel Dual Core 2.4 Ghz cpu running Windows Vista with 4 G-bytes RAM.

Initial analysis showed:

e 88.6 percent of CPU cycles were spent in routine biotsav.
e 10.0 percent of CPU cycles were spent in routine pwindvel.

Routine pwindvel contains a sequence of nested do loops. At the core of these loops is a call to
the biotsav routine. This was a key place to introduce the OpenMP directives:



e OMP Parallel Do
e OMP Private
e OMP Reduction

This placement allows multiple threads to increase the overall simulation run-time performance.

Results

Very few runs have been done to validate the new Free Vortex Wake Model. The goal of the
work was to develop the basic code. Runs which have been done model the UAE turbine. This
was a highly instrumented wind tunnel test of a thirty foot turbine. [10] Computer runs modeled
operation at 8 m/s using four available models, BEM, GDW, Prescribed Vortex Wake and the new
Free Vortex Wake. This model assumed a rigid structure and steady head on wind. The results
from each model are shown in Table 1. Each run used the same input data.

Table 1: Power Calculations

Power Calculations
Model Power (kW) | Rotor Torque (Nm)
Blade Element Momentum 8.06 1070
Generalized Dynamic Wake 8.55 1140
Dynamic Prescribed Wake 8.08 1070
Free Vortex Wake 8.21 1090

For this same model axial inductions were plotted at each blade element. This is a good way to
determine steady state characteristics giving an indication of performance radially along the blade.
Figure 4 shows this plot for the four models available.

The Dynamic Inflow, Generalized Dynamic Wake, model is not expected to predict axial induc-
tion well. It shows a trend through the center of data but details aren’t useful. The Blade Element
Momentum model follows the other models away from the blade tip and root. At the tip and
root it predicts higher axial induction than the other models. A Prandtl root and tip loss model
was applied. The Dynamic Prescribed Wake and Free Vortex Wake models follow nearly identical
trends. The Free Wake predicts a slightly lower axial induction at all points than the Prescribed
Wake model. This steady state correlation shouldn’t be a surprise, the prescription functions used
in that model were derived from a free wake model.

The data in Figure 4 does indicate the new Free Wake Model is functioning as expected.

The run times are also of interest. Table 2 below shows the run times for each model. This was
using 10 blade elements, 15° azimuth steps while retaining 5 wake cycles.

The Free Wake model is considerably slower than the other models. It is some 35 times slower
than the prescribed wake model and 400 times slower than the standard BEM model.

It would be advantageous to speed up the free wake solution times. As stated above, the Biot-
Savart calculations, which take most of the time in a free wake model, are very parallel in nature.
Results of applying multi-core parallel processing to the model was undertaken. Sample runs were
done on an idle machine with .5 percent operating system overhead. All runs with the exception of
the single thread run, had 100 percent CPU usage. Optimization was set to speed over code size.
Initial results for the Dual Core 2.4 Ghz CPU are shown in Table 3.
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Figure 4: Axial Induction

Table 2: Program Run Times
Run Times
Model Time (s)
Blade Element Momentum 2.624
Generalized Dynamic Wake 2.620
Dynamic Prescribed Wake 27.97
Free Vortex Wake 1027.5

Note that, as expected, if more threads are requested than cores available run times start to
increase.

Runs of one and two processing threads show a significant decrease in processing time as the
thread count increases. When the thread count exceeds the CPU available cores, thread creation
and scheduling overhead cause the run time to increase; however, the run time remains significantly
better than the single threaded processing model. The initial results indicate increasing number of
processing cores has the potential to continuously decrease run time.

The simulation program was then taken to a machine configured with two quad core, 2.6 Ghz
CPUs, also running Windows Vista. The runs were made on simulations starting with a single
thread increasing consecutively to 8 threads. The results of the simulation runs on the quad core
CPUs are shown in Table 4. Figure 5 shows the multi-core results graphically.

Parallelization of the Biot-Savart algorithm proves to be very beneficial in decreasing overall
simulation run time. The most significant reduction in overall run time is with the addition of a
second thread, reducing time by approximately 45%. As processing threads are added, run time
continues to decrease, showing less benefit; however, with the 8 cores in the system running at full
capacity, the trend continued downward without hitting a plateau. This indicates adding beyond
8 processing cores would continue to decrease simulation run times.



Table 3: Dual Core Run Times

Run Times
Threading Mode | Time (s)
1 Thread 420.774
2 Threads 250.226
3 Threads 356.241
4 Threads 353.227
5 Threads 401.778
6 Threads 418.205
7 Threads 476.424
8 Threads 526.703

Table 4: Eight Core Speedup

Run Times

Threading Mode | Time (s) | Speedup %
1 Thread 571.234 0.0
2 Threads 312.468 45.3
3 Threads 232.700 59.3
4 Threads 184.125 67.8
5 Threads 165.790 71.0
6 Threads 144.546 75.0
7 Threads 131.472 77.0
8 Threads 128.367 77.5

% run time

2 core machine
8 core machine

# cores

Figure 5: Mulit-core Run Times

Conclusions

The two research goals were to develop the core of a Free Vortex Wake model and to show the

applicability of multi-core processing to such a model.

A basic Free Vortex Wake model has been developed and integrated into AeroDyn. The model
is rudimentary but will form a good basis for ongoing research.
The introduction of multi-threading into the algorithm was done with the OpenMP library.
This allowed multi-threading to be added to the simulation with no modification of the algorithm
itself. The results of better than 75% program speed-up are very promising, showing that the Free
Vortex Wake calculation can be done in reasonable processing time with the new generation of

multi-core CPUs.

The researchers are pleased to report the goals of the project have been met.




Future Development

A Free Vortex Wake model linked to AeroDyn is a powerful tool on which to base future research.
The first carry on work will be to better validate the code, both statically and dynamically. The
code, as well as AeroDyn and its structural code FAST are open source. A validated code will
be an attractive vehicle for ourselves and other researchers to investigate turbine operation. Two
areas of such research are anticipated to be yawed flow and dynamic flow. The new model should
give insight into these regimes of operation.

The main hurdle to using such free wake models is the computational expense they entail. The
multi-core work done is anticipated to make this, and similar codes, more attractive. There is a
research opportunity to improve execution times through model refinement as well as multi-core
processing. Both are a good basis for ongoing research. Techniques such as tip and root vortex
roll up are examples. Research here would be to implement the techniques followed by validation
of the new models.

Opportunities for ongoing research are now being investigated.



Expenses

The project budget was for faculty time only, no equipment funds. A multi-core processor is
now on loan from Intel.

The times expended on the project by Hugh Currin and Jim Long exceeded those proposed
though this was anticipated from the start. The expenses were as follows:

Faculty Time and Cost
Prof. Currin 169.5 hours @ $49 /hr $ 8306.
Prof. Long 162.5 hours @ $40/hr $ 6500.

Indirect Costs
OIT federally approved indirect rate
of 58.5% on $14,806 in salaries $ 8622.

Total Project Cost $ 23,468.
Dr. Jason Jonkman from the National Wind Technology Center at the National Renewable
Energy Lab assisted on the project. However his time was paid directly by NREL.

Prof. Coton consulted on the project but was not able to contribute the 17 hr anticipated.
These funds were distributed to OIT faculty for their additional hours.
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